
www.ijiarec.com

Author for correspondence:

Department of Computer Science and Engineering, Bharathiyar Institute of Engineering for Women,

Deviyakurichi, Attur- 636112

 Volume-8 Issue-3

International Journal of Intellectual Advancements

and Research in Engineering Computations

TRIDENT: Distributed storage, analysis, and exploration of

multidimensional phenomena

K.Saranya
1
, C.Saranya

2

1
Assistant Professor, Department of Computer Science and Engineering, Bharathiyar Institute of

Engineering for Women, Deviyakurichi, Attur- 636112

2
PG Scholar Master of Engineering, Department of Computer Science and Engineering, Bharathiyar

Institute of Engineering for Women, Deviyakurichi, Attur- 636112

ABSTRACT

Rising storage and computational capacities have led to the accumulation of voluminous datasets. These datasets

contain insights that describe natural phenomena, usage patterns, trends, and other aspects of complex, real-world

systems. Statistical and machine learning models are often employed to identify these patterns or attributes of

interest. However, a wide array of potentially relevant models and parameterizations exist, and may provide the best

performance only after preprocessing steps have been carried out. Our distributed analytics platform, TRIDENT,

facilitates the modeling process by providing high-level data exploration functionality as well as guidance for

creation of effective models. TRIDENT handles [1] data partitioning and storage, [2] metadata extraction and

indexing, and [3] selective retrievals or transformations to prepare and generate training data. In this study, we

evaluate TRIDENT in the context of a 1.1 peat byte epidemiology dataset generated by a disease spread simulation;

such datasets are often used in planning for national-scale outbreaks in animal populations.

Keywords: High-Level Data, Voluminous Data Management, Data Partitioning and Storage, Effective Models.

INTRODUCTION

We are in an age often referred to as the

information age. In this information age, because

we believe that information leads to power and

success, and thanks to sophisticated technologies

such as computers, satellites, etc., we have been

collecting tremendous amounts of information.

Initially, with the advent of computers and means

for mass digital storage, we started collecting and

storing all sorts of data, counting on the power of

computers to help sort through this amalgam of

information. Unfortunately, these massive

collections of data stored on disparate structures

very rapidly became over whelming. This initial

chaos has led to the creation of structured

databases and database management systems

(DBMS). The efficient database management

systems have been very important assets for

management of a large corpus of data and

especially for effective and efficient retrieval of

particular information from a large collection

whenever needed. The proliferation of database

management systems has also contributed to recent

massive gathering of all sorts of information.

Today, we have far more information than we can

handle: from business transactions and scientific

data, to satellite pictures, text reports and military

intelligence. Information retrieval is simply not

enough anymore for decision-making. Confronted

with huge collections of data, we have now created

new needs to help us make better managerial

choices. These needs are automatic summarization

of data, extraction of the "essence" of information

stored, and the discovery of patterns in raw data

[4-7].

ISSN:2348-2079

479
Saranya K & Saranya C et al., Inter. J. Int. Adv. & Res. In Engg. Comp., Vol.–08(03) 2020 [478-482]

Copyrights © International Journal of Intellectual Advancements and Research in Engineering Computations,

www.ijiarec.com

Data Mining Architecture

RELATED WORK

The graphs used in Galileo share some common

features with k-d trees, but do not employ binary

splitting and allow much greater fan-out as a

result. Similar to Tries, identical attributes in a

record can be expressed as single vertices, which

simplify traversals and can reduce memory

consumption. However, Galileo graphs support

multiple concurrent data types, maintain an

explicit feature hierarchy (that can also be

reoriented at runtime), and employ dynamic

quantization through configurable tick marks.

Mongo DB shares several design goals with

Galileo, but is a document-centric storage platform

that does not support analytics directly. However,

Mongo DB has rich geospatial indexing

capabilities and supports dynamic schemas through

its JSON-inspired binary storage format, BSON.

Mongo DB can use the Geohash algorithm for its

spatial indexing functionality, and is backed by a

B-tree data structure for fast lookup operations.

For load balancing and scalability, the system

supports sharding ranges of data across available

computing and storage resources, but imposes

some limitations on the breadth of analysis that can

be performed on extremely large datasets in a

clustered setting [8-10].

Facebook’s Cassandra project is a distributed

hash table that supports column-based,

multidimensional storage in a tabular format. Like

Galileo, Cassandra allows user-defined partitioning

schemes, but they directly affect lookup operations

as well; for instance, using the random data

partitioner backed by a simple hash algorithm does

not allow for range queries or adaptive changes to

the partitioning algorithm at runtime. This ensures

that retrieval operations are efficient, but also

limits the flexibility of partitioning schemes.

Cassandra scales out linearly as more hardware is

added, and supports distributed computation

through the Hadoop runtime. Predictive and

approximate data structures are not maintained by

the system itself, but could be provided through

additional preprocessing as new data points are

added to the system.

LITERATURE SURVEY

Matthew Malensek, SangmiPallickara and

ShrideepPallickara

As remote sensing equipment and networked

observational devices continue to proliferate, their

corresponding data volumes have surpassed the

storage and processing capabilities of commodity

computing hardware. This trend has led to the

development of distributed storage frameworks

that incrementally scale out by assimilating

resources as necessary. While challenging in its

own right, storing and managing voluminous

datasets is only the precursor to a broader field of

research: extracting insights, relationships, and

models from the underlying datasets. The focus of

480
Saranya K & Saranya C et al., Inter. J. Int. Adv. & Res. In Engg. Comp., Vol.–08(03) 2020 [478-482]

Copyrights © International Journal of Intellectual Advancements and Research in Engineering Computations,

www.ijiarec.com

this study is twofold: exploratory and predictive

analytics over voluminous, multidimensional

datasets in a distributed environment. Both of these

types of analysis represent a higher-level

abstraction over standard query semantics; rather

than indexing every discrete value for subsequent

retrieval, our framework autonomously learns the

relationships and interactions between dimensions

in the dataset and makes the information readily

available to users.

Konstantin Shvachko; HairongKuang ;

Sanjay Radia

The Hadoop Distributed File System (HDFS) is

designed to store very large data sets reliably, and

to stream those data sets at high bandwidth to user

applications. In a large cluster, thousands of

servers both host directly attached storage and

execute user application tasks. By distributing

storage and computation across many servers, the

resource can grow with demand while remaining

economical at every size. We describe the

architecture of HDFS and report on experience

using HDFS to manage 25 pet bytes of enterprise

data at Yahoo!

PROPOSED SYSTEM

In Proposed System a new data partitioning

method to well balance computing load among the

cluster nodes; we develop FiDoop-HD, an

extension of FiDoop, to meet the needs of high-

dimensional data processing.

Advantages

 FiDoop is efficient and scalable on Hadoop

clusters.

 Reducing I/O overhead,

 Offering a natural way of partitioning a dataset,

 Compressed storage, and

 Averting recursively travers

SYSTEM MODEL

MODULES

 Frequent Itemset Mining

 MapReduce Framework

 Parallel FP-Growth Algorithm

https://ieeexplore.ieee.org/author/37333168200
https://ieeexplore.ieee.org/author/37377738700

481
Saranya K & Saranya C et al., Inter. J. Int. Adv. & Res. In Engg. Comp., Vol.–08(03) 2020 [478-482]

Copyrights © International Journal of Intellectual Advancements and Research in Engineering Computations,

www.ijiarec.com

Frequent itemset mining

 Frequent Itemset Mining is one of the

most critical and time-consuming tasks in

association rule mining (ARM), an often-used data

mining task, provides a strategic resource for

decision support by extracting the most important

frequent patterns that simultaneously occur in a

large transaction database. A typical application of

ARM is the famous market basket analysis.

Map reduce framework

MapReduce is a popular data processing

paradigm for efficient and fault tolerant workload

distribution in large clusters. A MapReduce

computation has two phases, namely, the Map

phase and the Reduce phase. The Map phase splits

an input data into a large number of fragments,

which are evenly distributed to Map tasks across a

cluster of nodes to process. Each Map task takes in

a key-value pair and then generates a set of

intermediate key-value pairs. After the MapReduce

runtime system groups and sorts all the

intermediate values associated with the same

intermediate key, the runtime system delivers the

intermediate values to Reduce tasks

Parallel Fp-Growth algorithm

This is based on a popular FP-Growth

algorithm called Parallel FP-Growth or Pfp for

short. Pfp implemented in Mahout is a parallel

version of the FPGrowth algorithm. Mahout is an

open source machine learning library developed on

Hadoop clusters. FP-Growth efficiently discovers

frequent itemsets by constructing and mining a

compressed data structure (i.e., FP-tree) rather than

an entire database. Pfp was designed to address the

synchronization issues by partitioning transaction

database into independent partitions, because it is

guaranteed that each partition contains all the data

relevant to the features (or items) of that group.

METHODOLOGY

Frequent items ultra-metric trees method

We made a complete overhaul to FIUT (i.e., the

frequent items ultra-metric trees method), and

addressed the performance issues of parallelizing

FIUT. We developed the parallel frequent itemsets

mining method (i.e., FiDoop) using the

MapReduce programming model. We proposed a

data distribution scheme to balance load among

computing nodes in a cluster. We further

optimized the performance of FiDoop and reduced

running time of processing high-dimensional

datasets. We conducted extensive experiments

using a wide range of synthetic and real-world

datasets, and we show that FiDoop is efficient and

scalable on Hadoop clusters. After the root is

labeled as null, an itemset p1, p2, . . . , pm of

frequent items is inserted as a path connected by

edges (p1, p2), (p2, p3), . . . , (pm−1, pm) without

repeating nodes, beginning with child p1 of the

root and ending with leaf pm in the tree. An FIU-

tree is constructed by inserting all itemsets as its

paths; each itemset contains the same number of

frequent items. Thus, all of the FIU-tree leaves are

identical height. Each leaf in the FIU-tree is

composed of two fields: named item-name and

count. The count of an item-name is the number of

transactions containing the itemset that is the

sequence in a path ending with the item name. Non

leaf nodes in the FIU-tree contain two fields:

named item-name and node-link. A node-link is a

pointer linking to child nodes in the FIU-tree.

CONCLUSION

To solve the scalability and load balancing

challenges in the existing parallel mining

algorithms for frequent item sets, we applied the

MapReduce programming model to develop a

parallel frequent item sets mining algorithm called

FiDoop. FiDoop incorporates the frequent items

ultra-metric tree or FIU-tree rather than

conventional FP trees, thereby achieving

compressed storage and avoiding the necessity to

build conditional pattern bases. FiDoop seamlessly

integrates three MapReduce jobs to accomplish

parallel mining of frequent item sets. The third

MapReduce job plays an important role in parallel

mining; its mappers independently decompose item

sets whereas its reducers construct small ultra-

metric trees to be separately mined. We improve

the performance of FiDoop by balancing I/O load

across data nodes of a cluster.

482
Saranya K & Saranya C et al., Inter. J. Int. Adv. & Res. In Engg. Comp., Vol.–08(03) 2020 [478-482]

Copyrights © International Journal of Intellectual Advancements and Research in Engineering Computations,

www.ijiarec.com

REFERENCES

[1]. M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: Cluster computing with working

sets,” in Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing, ser. HotCloud’10.

Berkeley, CA, USA: USENIX Association, 2010, 10–10.

[2]. C. Lam, Hadoop in Action. Greenwich, CT, USA: Manning Publications Co., 2010.

[3]. M. Abadi, P. Barham, J. Chen, “Tensorflow: A system for large-scale machine learning,” in Proceedings of the

12th USENIX Conference on Operating Systems Design and Implementation, ser. OSDI’16. Berkeley, CA,

USA: USENIX Association, 2016, 265–283. http: //dl.acm.org/citation.cfm?id=3026877.3026899

[4]. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R.

Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,

“Scikit-learn: Machine learning in python,” J. Mach. Learn. Res., 12, 2011, 2825–2830.

[5]. K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop distributed file system,” in Proceedings of

the 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), ser. MSST ’10.

Washington, DC, USA: IEEE Computer Society, 2010, 1–10. Available: http://dx.doi.org/10.1109/MSST.

2010.5496972

[6]. M. Zaharia, “Resilient distributed datasets: A faulttolerant abstraction for in-memory cluster computing,” in

Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation, ser.

NSDI’12. Berkeley, CA, USA: USENIX Association, 2012, 2–2.

Available: http: //dl.acm.org/citation.cfm?id=2228298.2228301

[7]. C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector machines,” ACM Trans. Intell. Syst.

Technol., 2(3), 2011, 1–27. Available: http: //doi.acm.org/10.1145/1961189.1961199

[8]. R Core Team, “R: A language and environment for statistical computing,” https://www.r-project.org/.

[9]. Pandas Developers, “Pandas python data analysis library,” http: //pandas.pydata.org.

[10]. N. Harvey, A. Reeves, M. Schoenbaum., “The North American Animal Disease Spread Model: A simulation

model to assist decision making in evaluating animal disease incursions,” Preventive Veterinary Medicine,

82(3), 2007, 176–197.

