
www.ijiarec.com 

 
Author for correspondence: 

Department of Computer Science and Engineering, Bharathiyar Institute of Engineering for Women, 

Deviyakurichi, Attur- 636112 

 

      Volume-8 Issue-3 

International Journal of Intellectual Advancements 

and Research in Engineering Computations 

TRIDENT: Distributed storage, analysis, and exploration of 

multidimensional phenomena 

K.Saranya
1
, C.Saranya

2
 

1
Assistant Professor, Department of Computer Science and Engineering, Bharathiyar Institute of 

Engineering for Women, Deviyakurichi, Attur- 636112
 

2
PG Scholar Master of Engineering, Department of Computer Science and Engineering, Bharathiyar 

Institute of Engineering for Women, Deviyakurichi, Attur- 636112
 

 

ABSTRACT 

Rising storage and computational capacities have led to the accumulation of voluminous datasets. These datasets 

contain insights that describe natural phenomena, usage patterns, trends, and other aspects of complex, real-world 

systems. Statistical and machine learning models are often employed to identify these patterns or attributes of 

interest. However, a wide array of potentially relevant models and parameterizations exist, and may provide the best 

performance only after preprocessing steps have been carried out. Our distributed analytics platform, TRIDENT, 

facilitates the modeling process by providing high-level data exploration functionality as well as guidance for 

creation of effective models. TRIDENT handles [1] data partitioning and storage, [2] metadata extraction and 

indexing, and [3] selective retrievals or transformations to prepare and generate training data. In this study, we 

evaluate TRIDENT in the context of a 1.1 peat byte epidemiology dataset generated by a disease spread simulation; 

such datasets are often used in planning for national-scale outbreaks in animal populations. 
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INTRODUCTION 

We are in an age often referred to as the 

information age. In this information age, because 

we believe that information leads to power and 

success, and thanks to sophisticated technologies 

such as computers, satellites, etc., we have been 

collecting tremendous amounts of information. 

Initially, with the advent of computers and means 

for mass digital storage, we started collecting and 

storing all sorts of data, counting on the power of 

computers to help sort through this amalgam of 

information. Unfortunately, these massive 

collections of data stored on disparate structures 

very rapidly became over whelming. This initial 

chaos has led to the creation of structured 

databases and database management systems 

(DBMS). The efficient database management 

systems have been very important assets for 

management of a large corpus of data and 

especially for effective and efficient retrieval of 

particular information from a large collection 

whenever needed. The proliferation of database 

management systems has also contributed to recent 

massive gathering of all sorts of information. 

Today, we have far more information than we can 

handle: from business transactions and scientific 

data, to satellite pictures, text reports and military 

intelligence. Information retrieval is simply not 

enough anymore for decision-making. Confronted 

with huge collections of data, we have now created 

new needs to help us make better managerial 

choices. These needs are automatic summarization 

of data, extraction of the "essence" of information 

stored, and the discovery of patterns in raw data 

[4-7]. 
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Data Mining Architecture 

 

 

RELATED WORK 

The graphs used in Galileo share some common 

features with k-d trees, but do not employ binary 

splitting and allow much greater fan-out as a 

result. Similar to Tries, identical attributes in a 

record can be expressed as single vertices, which 

simplify traversals and can reduce memory 

consumption. However, Galileo graphs support 

multiple concurrent data types, maintain an 

explicit feature hierarchy (that can also be 

reoriented at runtime), and employ dynamic 

quantization through configurable tick marks. 

Mongo DB shares several design goals with 

Galileo, but is a document-centric storage platform 

that does not support analytics directly. However, 

Mongo DB has rich geospatial indexing 

capabilities and supports dynamic schemas through 

its JSON-inspired binary storage format, BSON. 

Mongo DB can use the Geohash algorithm for its 

spatial indexing functionality, and is backed by a 

B-tree data structure for fast lookup operations. 

For load balancing and scalability, the system 

supports sharding ranges of data across available 

computing and storage resources, but imposes 

some limitations on the breadth of analysis that can 

be performed on extremely large datasets in a 

clustered setting [8-10].  

Facebook’s Cassandra project is a distributed 

hash table that supports column-based, 

multidimensional storage in a tabular format. Like 

Galileo, Cassandra allows user-defined partitioning 

schemes, but they directly affect lookup operations 

as well; for instance, using the random data 

partitioner backed by a simple hash algorithm does 

not allow for range queries or adaptive changes to 

the partitioning algorithm at runtime. This ensures 

that retrieval operations are efficient, but also 

limits the flexibility of partitioning schemes. 

Cassandra scales out linearly as more hardware is 

added, and supports distributed computation 

through the Hadoop runtime. Predictive and 

approximate data structures are not maintained by 

the system itself, but could be provided through 

additional preprocessing as new data points are 

added to the system. 

 

LITERATURE SURVEY 

Matthew Malensek, SangmiPallickara and 

ShrideepPallickara 

As remote sensing equipment and networked 

observational devices continue to proliferate, their 

corresponding data volumes have surpassed the 

storage and processing capabilities of commodity 

computing hardware. This trend has led to the 

development of distributed storage frameworks 

that incrementally scale out by assimilating 

resources as necessary. While challenging in its 

own right, storing and managing voluminous 

datasets is only the precursor to a broader field of 

research: extracting insights, relationships, and 

models from the underlying datasets. The focus of 
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this study is twofold: exploratory and predictive 

analytics over voluminous, multidimensional 

datasets in a distributed environment. Both of these 

types of analysis represent a higher-level 

abstraction over standard query semantics; rather 

than indexing every discrete value for subsequent 

retrieval, our framework autonomously learns the 

relationships and interactions between dimensions 

in the dataset and makes the information readily 

available to users.  

Konstantin Shvachko; HairongKuang ;  

Sanjay Radia  

The Hadoop Distributed File System (HDFS) is 

designed to store very large data sets reliably, and 

to stream those data sets at high bandwidth to user 

applications. In a large cluster, thousands of 

servers both host directly attached storage and 

execute user application tasks. By distributing 

storage and computation across many servers, the 

resource can grow with demand while remaining 

economical at every size. We describe the 

architecture of HDFS and report on experience 

using HDFS to manage 25 pet bytes of enterprise 

data at Yahoo! 

 

PROPOSED SYSTEM 

In Proposed System a new data partitioning 

method to well balance computing load among the 

cluster nodes; we develop FiDoop-HD, an 

extension of FiDoop, to meet the needs of high-

dimensional data processing. 

Advantages 

 FiDoop is efficient and scalable on Hadoop 

clusters.  

 Reducing I/O overhead, 

  Offering a natural way of partitioning a dataset,  

 Compressed storage, and  

 Averting recursively travers 

 

SYSTEM MODEL 

 

 
 

MODULES 

 Frequent Itemset Mining 

 MapReduce Framework 

 Parallel FP-Growth Algorithm 

https://ieeexplore.ieee.org/author/37333168200
https://ieeexplore.ieee.org/author/37377738700


481 
Saranya K & Saranya C et al., Inter. J. Int. Adv. & Res. In Engg. Comp., Vol.–08(03) 2020 [478-482] 

Copyrights © International Journal of Intellectual Advancements and Research in Engineering Computations, 

www.ijiarec.com 

Frequent itemset mining 

 Frequent Itemset Mining is one of the 

most critical and time-consuming tasks in 

association rule mining (ARM), an often-used data 

mining task, provides a strategic resource for 

decision support by extracting the most important 

frequent patterns that simultaneously occur in a 

large transaction database. A typical application of 

ARM is the famous market basket analysis. 

Map reduce framework 

MapReduce is a popular data processing 

paradigm for efficient and fault tolerant workload 

distribution in large clusters. A MapReduce 

computation has two phases, namely, the Map 

phase and the Reduce phase. The Map phase splits 

an input data into a large number of fragments, 

which are evenly distributed to Map tasks across a 

cluster of nodes to process. Each Map task takes in 

a key-value pair and then generates a set of 

intermediate key-value pairs. After the MapReduce 

runtime system groups and sorts all the 

intermediate values associated with the same 

intermediate key, the runtime system delivers the 

intermediate values to Reduce tasks 

Parallel Fp-Growth algorithm 

This is based on a popular FP-Growth 

algorithm called Parallel FP-Growth or Pfp for 

short. Pfp implemented in Mahout is a parallel 

version of the FPGrowth algorithm. Mahout is an 

open source machine learning library developed on 

Hadoop clusters. FP-Growth efficiently discovers 

frequent itemsets by constructing and mining a 

compressed data structure (i.e., FP-tree) rather than 

an entire database. Pfp was designed to address the 

synchronization issues by partitioning transaction 

database into independent partitions, because it is 

guaranteed that each partition contains all the data 

relevant to the features (or items) of that group. 

 

METHODOLOGY 

Frequent items ultra-metric trees method 

We made a complete overhaul to FIUT (i.e., the 

frequent items ultra-metric trees method), and 

addressed the performance issues of parallelizing 

FIUT. We developed the parallel frequent itemsets 

mining method (i.e., FiDoop) using the 

MapReduce programming model. We proposed a 

data distribution scheme to balance load among 

computing nodes in a cluster. We further 

optimized the performance of FiDoop and reduced 

running time of processing high-dimensional 

datasets. We conducted extensive experiments 

using a wide range of synthetic and real-world 

datasets, and we show that FiDoop is efficient and 

scalable on Hadoop clusters. After the root is 

labeled as null, an itemset p1, p2, . . . , pm of 

frequent items is inserted as a path connected by 

edges (p1, p2), (p2, p3), . . . , (pm−1, pm) without 

repeating nodes, beginning with child p1 of the 

root and ending with leaf pm in the tree.  An FIU-

tree is constructed by inserting all itemsets as its 

paths; each itemset contains the same number of 

frequent items. Thus, all of the FIU-tree leaves are 

identical height. Each leaf in the FIU-tree is 

composed of two fields: named item-name and 

count. The count of an item-name is the number of 

transactions containing the itemset that is the 

sequence in a path ending with the item name. Non 

leaf nodes in the FIU-tree contain two fields: 

named item-name and node-link. A node-link is a 

pointer linking to child nodes in the FIU-tree. 

 

CONCLUSION 

To solve the scalability and load balancing 

challenges in the existing parallel mining 

algorithms for frequent item sets, we applied the 

MapReduce programming model to develop a 

parallel frequent item sets mining algorithm called 

FiDoop. FiDoop incorporates the frequent items 

ultra-metric tree or FIU-tree rather than 

conventional FP trees, thereby achieving 

compressed storage and avoiding the necessity to 

build conditional pattern bases. FiDoop seamlessly 

integrates three MapReduce jobs to accomplish 

parallel mining of frequent item sets. The third 

MapReduce job plays an important role in parallel 

mining; its mappers independently decompose item 

sets whereas its reducers construct small ultra-

metric trees to be separately mined. We improve 

the performance of FiDoop by balancing I/O load 

across data nodes of a cluster. 
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