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Abstract--Recent years have seen significant 

progress in improving both the efficiency and 

effectiveness of time series classification. 

However, because of the best solution typically 

the Fuzzy Nearest Neighbour Algorithm with 

the relatively expensive Dynamic Time Warping 

as the distance measure, successful deployments 

on resource constrained devices remain elusive. 

Common technique to collect the benefits of 

Fuzzy Nearest  Neighbor Algorithm is without 

inheriting its time complexity. However, because 

of the unique property (most) time series data 

and the centroid typically does not resemble any 

of the instances, an unintuitive and 

underappreciated fact. This project shows that 

it can exploit a recent result to allow meaningful 

averaging of “warped” times series and this 

result allows us to create ultra-efficient Nearest 

“Centroid” classifiers that are at least as 

accurate as their more lethargic Nearest 

Neighborcousins. 

I.INTRODUCTION 

There is increasing acceptance that the Nearest 

Neighbor (NN) algorithm with Dynamic Time 

Warping (DTW) as the distance measure is the 

technique of choice for most time series 

classification problems. Compare the NN-

DTW to nearly all of the most highly cited 

distance measures in the literature on various 

datasets and found that no distance measure 

consistently beats DTW, but DTW almost 

always outperforms most methods that were 

originally touted as superior, based on less 

complete empirical evaluations. 

The nearest centroid classifier is an 

apparent solution to this problem. It allows us 

to avail of the strengths of the NN algorithm, 

while bypassing the latter’s substantial space 

and time requirements. 

Contract Time Series Classification: 

Given  (1)  a  large  time  series  training  

dataset,  (2)  the  maximum amount  of 

computation resources available, and (3)  as  

much  training  time  as  needed,  produce  the  

most  accurate classifier possible.  Assume that 

the computational resource constraint will be 

time, not space, and that it will be given to us 

in the form of the number of CPU cycles 

available each second.  For ease of exposition 

assume that the constraint will be  given  as  a  

positive  integer  C,  which  is  the  number  of  

exemplars  per  class  that   can  examine  

when  asked  to  Classify a  new  object. 

Explained  in  the  introduction,  based  

on  the consensus  of  the  literature  and  their 

own  experiments, believe  that  the  best  

solution  will  be  a  variant  of  Nearest 

Neighbor classification. While decision trees 

and Bayesian classifiers are very efficient, the 

fact that no competitively accurate classifiers 

for time series based on these methods have 

been produced in a research area as active and 

competitive as time series classification, is 

very effective.  
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Reducing the data cardinality, and 

doing NN-DTW on the reduced cardinality 

data. While  classification  on  suitable  

reduced  cardinality  data  has  little  effect  on  

accuracy  ,  it  only  helps  scalability  on  

specialized  hardware. Reducing the data 

dimensionality, and doing NN-DTW on the 

reduced dimensionality data. This idea has 

been in the literature for at least two decades, 

and seems to have been rediscovered many 

times.  The idea works well when the raw data 

is over sampled.  

 

II.RELATED WORK AND BACKGROUND 

The idea that the mean of a set of objects 

may be more representative than any 

individual object from that set dates back at 

least a century to a famous observation of 

Francis Galton. Galton noted that the crowd at 

a county fair accurately guessed the weight of 

an ox when their individual guesses were 

averaged [9]. Galton realized that the average 

was closer to the ox's true weight than the 

estimates of most crowd members, and also 

much closer than any of the separate estimates 

made by cattle experts. 

This idea is frequently exploited in 

machine learning. For example the Nearest 

centroid classifier [10] generalizes the Nearest 

neighbor classifier by replacing the set of 

neighbors with their centroid. It should be 

noted that there are two separate motivations 

for using the nearest centroid classifier. Most 

obviously it is faster, being O(1) rather than 

O(n). However, and less intuitively, it is also 

known that some circumstances, the Nearest 

centroid classifier is more accurate than the 

Nearest neighbor classifier (NN) [11]. 

 

Because it may be counterintuitive that the 

nearest centroid classifier can be more 

accurate than NN, we will demonstrate this in 

an intuitive setting. Consider a domain in 

which all exemplars are uniformly distributed 

in the unit square, with objects having an X-

value less than 0.5 assigned the label A, 

otherwise B. Figure 2 illustrates an example in 

which there are just three instances per class. 
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Figure 2: A simple classification problem in which the concept 

is the left vs. right side of the unit square. This instance of the 

problem has three points per class. left) Here NN has error-rate 

of 12.60%, while the Nearest 

Centroid classifier (right) with the same instances achieves an 

error-rate of just 5.22% 

 

It is important to note that the Nearest 

centroid classifier is not guaranteed to be more 

accurate than the NN classifier in general.  

In spite of the existence of such 

pathological cases, the Nearest centroid 

classifier often outperforms the NN algorithm 

on real datasets, especially if one is willing (as 

we are) to generalize it slightly; for example, 

by using clustering to allow a small number of 

centroids, rather than just one. Thus our claim 

is simply: 

 

 Sometimes NCC and NN can have 

approximately the same accuracy, in such 

cases we prefer NCC because it is faster and 

requires less memory. 

 

 Sometimes NCC can be more accurate 

than NN, in such cases  we prefer NCC 

because of the accuracy gains, and the reduced 

computational requirements come “for free”. 

The above discussion at first may appear to 

be moot for time series, because the concept of 

“centroid” for warped time series is ill-

defined. It is the central contribution of this 

paper to show that we can take the “centroid” 

for warped time series in a principled manner 

that allows us to achieve both improvements in 

accuracy and reduced computational 

requirements at run time. 
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The difficulty faced by the cognitive 

scientists is similar to the pragmatic difficulty 

we face here. In some cases averages may be 

well defined, for example, the average height 

of Norwegian man. However, for some objects 

it is much less clear how to represent and 

compute averages. For example, computing an 

average face has been pursued since at least 

1883 (again, Francis Galton, using composite 

photography) but significant progress has only 

been made in the last decade. Tellingly, this 

progress in face averaging was exploited to 

produce dramatic improvements in 

classification accuracy with a Science paper 

boasting 

Compared to the complexity inherent in 

faces, time series seem like they would be 

simple to average, however as Figure 1 hints 

at, the classic definition of centroid for time 

series usually produces a prototype which is 

not typical of the data. 

 

III. DEFINITIONS AND PROBLEM 

STATEMENT  

We present the definitions of key 

terms that we use in this work. For our 

problem, each object in the data set is a time 

series, which may be of different length.  

A. Definitions  

Definition 1: Time Series. A time series    T = 

(t1, ... ,tL) is an ordered set of real values. The 

total number of real values is equal to the 

length of the time series (L ). A dataset D = 

{T1, ... , TN} is a collection of N such time 

series.  

B. Averaging under time warping – related 

work  

Computational biologists have long known 

that averaging under time warping is a very 

complex problem, because it directly maps 

onto a multiple sequence alignment: the “Holy 

Grail” of computational biology [15]. Finding 

the multiple alignment of a set of sequences, 

or its average sequence (often called consensus 

sequence in biology) is a typical chicken-and-

egg problem: knowing the average sequence 

provides a multiple alignment and vice versa. 

Finding the solution to the multiple alignment 

problem (and thus finding of an average 

sequence) has been shown to be NP-complete 

[16] with the exact solution requiring O(LN) 

operations for N sequences of length L.  

Finding the average of a set is best 

seen as an optimization problem, as explained 

by the definition below. 

Definition 2: Average object. Given a set of 

objects O = {O1, ... ,ON} in a space E induced 

by a measure d, the average object  o is the 

object that minimizes the sum of the squares to 

the set: 

      
   

∑        

 

   

 

This definition demonstrates that 

finding the average of a set is intrinsically 

linked to the measure that is used to compare 

the data. This means that the average method 

has to be specifically designed for every 

measure that is used to compare data.  

In our case, the objects are time series 

and the measure is DTW. We can thus now 

define what the average sequence should be to 

be consistent with Dynamic Time Warping.  

Definition 3: Average time series for DTW. 

Given a set of time series D = {T1,..., TN} in a 

space induced by Dynamic Time Warping, the 

average time series  ̅  is the time series that 

minimizes: 

      
   

∑      ̅    

 

   

 

Many attempts at finding an averaging 

method for DTW have been made since the 

1990s. Researchers have exploited the idea 

that the exact average of two time series can 

be computed in O(L2). These papers have 

proposed different tournament schemes (the 

guide trees in computational biology) in which 

the sequences should be averaged first.  

In this view, DTW based averaging 

can be seen as an attempt to recover the 

“ancestor” state. For example, the platonic 

prototype may be an individual’s internal 
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(muscle memory) representation of her golf 

swing or her rendition of a song, of which we 

can only observe external performance 

approximations. 

C. DBA: the best-so-far method to average 

time series for Dynamic Time Warping  

DTW Barycenter Averaging (DBA), 

introduced in [8], exploits the parallels 

between time series and computational 

biology, while taking account of the unique 

properties of the former. We have shown in [8] 

that DBA outperforms all existing averaging 

techniques on all datasets of the UCR Archive. 

In particular it always obtained lower residuals 

(Equation 2) than the state-of-the-art methods, 

with a typical margin of about 30%, making it 

the best method to date for time series 

averaging for DTW.  

DBA iteratively refines an average sequence  ̅ 

and follows an expectation-maximization 

scheme:  

1. Consider  ̅ fixed and find the best multiple 

alignment2 of the set of sequences consistently 

with  ̅  .  

2. Now consider M fixed and update  ̅  as the 

best average sequence consistent with M .  

3. It actually finds the compact multiple 

alignment.  

  

IV. OBSERVATIONS AND ALGORITHMS 

Contract algorithms are a special type 

of anytime algorithms that require the amount 

of run-time to be determined prior to their 

activation. In other words, contract algorithms 

offer a tradeoff between computation time and 

quality of results, but they are not 

interruptible.  

TABLE I. GENERAL ALGORITHM FOR 

DBA 

Algorithm 1. DBA( D, I )  

Require: D: the set of sequences to average  

Require: I: the number of iterations  

1:  

2:  

3:  

 ̅= medoid(D ) // get the medoid of the set of 

sequences D  

do times  ̅ = DBA_update( ̅,D )  

return  ̅ 

 

 

Algorithm 2. DBA_update(     
̅̅ ̅̅ ̅̅ ,D )  

Require:      
̅̅ ̅̅ ̅̅ : the average sequence to refine (of 

length L)  

Require:D : the set of sequences to average  

1:  

2:  

3:  

4:  

5:  

6:  

7:  

8:  

9:  

10:  

11:  

 

 

12:  

13:  

14:  

// Step #1: compute the multiple alignment for  

alignment = [     ]// array of L empty sets  

for each S in D do  

  alignment_for_S = DTW_multiple_alignment(     
̅̅ ̅̅ ̅̅ , S )  

  for i=1 to L do  

     alignment[i] = alignment[i]    alignment_for_S[i]  

done  

done  

// Step #2: compute the multiple alignment 

 for the alignment  

let  ̅ be a sequence of length L  

for i=1 to L do  

 ̅(i)= mean( alignment[i] )//arithmetic mean on the set  

done  

return  ̅ 

 

Algorithm 3. DTW_multiple_alignment (Sref , S) 

 

Require: Sref: the sequence for which the alignment is 

computed 

Require: S: the sequence to align to Sref  

using DTW 

 

1: 

 

2: 

3: 

4: 

5: 

6: 

 

7: 

 

8: 

9: 

10: 

11: 

12: 

13: 

 

// Step #1: compute the accumulated cost 

matrix of DTW  

cost = DTW(Sref , S )  

// Step #2: store the elements associated to 

Sref 

L = length(Sref)  

alignment = // array of L empty sets  

i= rows( cumul_cost ) // i iterates over the 

elements of Sref 

j= columns( cumul_cost ) //j iterates over 

the elements of S  

while (i>1)&&(j>1)do  

  alignment[i ] = alignment[i ]   S(j) 

  if i--1then j - j - 1  

  else if j -- 1then i – i – 1 

  else  

    score = min( cost[i-1][j-1] , cost[i][j-1] , 
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14: 

15: 

16: 

17: 

18: 

19: 

20: 

21: 

22: 

 

cost[i-1][j] )  

    if score = = cost[i-1][j-1] then  

      i = i-1  

      j = j-1 

   else if score = = cost[i-1][j] then i = i - 1 

   else  j = j-1 

   end if  

 end if  

done  

return alignment  

 

V.EXPERIMENTAL EVALUATION 

The following Table 6.1 describes 

experimental result for proposed system 

analysis. The table contains hard clustering 

performances for iris data sets in proposed 

system in purity, entropy, V-mean, Rand and 

F-Mean details are shown 

 

PURI

TY 

ENTRO

PY 

V-

MEA

NS 

RAN

D 

F-

MEA

NS 

FRECCA 0.852 0.486 0.702 

0.92

5 0.597 

KNN 

Classifica

tion 0.802 0.436 0.678 

0.89

2 0.542 

GMM 0.713 0.335 0.634 

0.88

5 0.521 

Table 5.1 Hard Clustering Performance on 

iris Data Sets 

The following Fig 5.1 describes 

experimental result for proposed system analysis. 

The table contains hard clustering performances 

for iris data sets in proposed system in purity, 

entropy, V-mean, Rand and F-Mean  

The following Table 5.2 describes 

experimental result for proposed system 

analysis. The table contains hard clustering 

performances for heart data sets in proposed 

system in purity, entropy, V-mean, Rand and 

F-Mean details are shown 

 

 

PUR

ITY 

ENTR

OPY 

V-

ME

ANS 

RA

ND 

F-

ME

ANS 

FREC

CA 

0.93

2 0.533 

0.78

2 

0.9

65 

0.69

7 

KNN 

Classifi

cation 

0.93

2 0.526 

0.73

8 

0.9

62 

0.63

7 

GMM 

0.80

8 0.438 

0.78

4 

0.9

85 

0.66

3 

Table 5.2 Hard Clustering Performance on 

Heart Data Sets 

The following Fig 5.2 describes 

experimental result for proposed system 

analysis. The table contains hard clustering 

performances for Heart data sets in proposed 

system in purity, entropy, V-mean, Rand and 

F-Mean  

 The following Table 5.3 describes 

experimental result for proposed system 

analysis. The table contains hard clustering 

performances for additional data sets (data set 

for iris) in proposed system rand index, NMI 

(Non-Maskable Interrupt) and F-Mean details 

are shown 

CLUSTER 

DOC 

RAND 

INDEX 

NMI F-MEAN 

1 0.500 4.200 0.6608 

2 0.342 7.638 0.494 

3 0.375 3.557 0.358 

4 0.249 7.858 0.329 

5 0.334 0.002 0.255 

Table 5.3 Proposed Dataset Performances 

Result 

 The following Fig 5.3 describes 

experimental result for proposed system 
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analysis. The table contains hard clustering 

performances for additional data sets (data set 

for iris) in proposed system rand index; NMI 

(Non-Maskable Interrupt) and F-Mean  

VI. CONCLUSION 

The Dynamic Time Warping (DTW) 

is able to find the optimal alignment between 

two time series. It is often used to determine 

time series similarity, classification and to find 

corresponding regions between two time 

series. DTW has a quadratic  time  and  space  

complexity  that  limits  its  use  to  only small 

time series data sets. It proves the linear time 

and space complexity of Fast Accuracy Model  

The proposed system is having the 

dynamic time warping and all the averaging 

techniques that included in the previous 

system by using different algorithms includes 

insert, update are also performed with multiple 

alignment in the existing system space. It also 

includes the delete operation in the dataset 

search space in the proposed system space are 

also included. The dynamic user input for 

dataset is done in the proposed system. The 

experimental system shown that clear result on 

averaging warped time series can be analyzed 

to allow us to create much faster and are more 

accurate time series classifiers. The results 

may be particularly useful for resource 

constrained situations. The research work 

improves the search space by expanding the 

search space by means of implementation with 

deletion. 

 

SCOPE OF FUTURE ENHANCEMENT 

 

Future work will look into increasing 

the accuracy of Fast Accuracy Model for 

DTW using k-NN. Possibilities to  increase  

the  accuracy  of  fast accuracy model for 

DTW  include  changing and evaluating search 

algorithms to guide search during the 

refinement step  rather  than  simple  

expanding  the  search  window in both 

directions. 
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